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Comparison with experimental data reveals satisfactory agreement of results 
of a theoretical study of the equilibrium form and hydrodynamic stability 
of a liquid layer on the surface of a rotating horizontal cylinder. 

The phenomenon of instability of the free surface of a liquid is observed in many 
technological processes [i, 2]. Theoretical study of nontrivial equilibrium forms after 
loss of stability in liquid jets and layers of cylindrical form rotating like a solid were 
carried out by the small parameter method in [3-6]. The method of extending the analyti- 
cal solution was used in [7]. Below we will establish the relationship between the form of 
the free surface of a rotating layer and the pressure head in the liquid and surroun6ing 
medium with no assumption of smallness of the deviation of nontrivial equilibrium surfaces 
from cylindrical. It will be shown that after loss of stability for certain values cf the 
pressure head equilibrlium periodic layers with various orders of symmetry are formed. 
Comparison with the experimental data of [2] shows that in reality one does find nonsteady 
state periodic disturbances of the cylindrical free surface having the largest increment 
coefficient in linear hydrodynamic stability theory. 

i. Neglecting viscous interaction with the surrounding medium and mass forces, in 
the cylindrical coordinate system {r, z, @} fixed to the rotating cylinder, one can derive 
the equation of the surface of the viscous liquid layer r = h(z, 0) fixed relative to the 
surface of the rotating cylinder [4, 5]. In the case r = h(@) this equation transforms to 
the form [8~ 

2hh" - -  4 (h 'F  § W e  (2mu - -  1 4-  h~) [(h') = § a~] 3/~ - -  2h= = o. ( 1 )  

Equation (1) is supplemented by periodicity conditions along 8 and a condition expressing 
the conservation of mass m, within the layer: 

h (0) = h (2~), h '  (0) ~- h' (2~), ( 2 )  

2 .f ( h = -  1) dO --= ,~,  = ~ (h~ - -  1). ( 3 )  
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Fig. i. Division of the pa- 
rameter plane (Eu, We) into 
subregions. 
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TABLE i. Number of Real Roots of the Poly- 
nomials Q0, QI, Q2 in Various Subregions 

~ umber of real I 
olynomial roots ] 

greater f/aanuni- 
ty 

No 
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As was shown in [8], the first integral of Eq. (i) has the form 

_ ( h ' ) ~  = - -  h 2 Q ~ Q ~ / Q ~ ,  

Qo(h, B ) = h  ~ @ 2 ( 2 E u - 1 )  h 2 - B ,  Q,.(h, B) =- Qo - -  ( - - 1 )  nSh /we ,  ( 4 )  

n = l ,  2. 

The l a y e r  s u r f a c e  e x t r e m a  a r e  g i v e n  by t h e  r o o t s  o f  t h e  p o l y n o m i a l s  Q~, Q2, w h i c h  a r e  l a r g -  
e r  than unity. The root of the polynomial Q0 is a singular point, since if as h + h, the 
polynomial Q0 + 0, then the derivative lh'l + ~. A study of the number of real roots of 
the polynomials Q0, QI, and Q2, greater than unity in the plane of the parameters (Eu, We), 
was performed by the Shturm method in the semiinfinite band -1.2 <- Eu <_ 1.2; We > 0. The 
region to be studied was covered by a grid of points with coordinates Eu m = -1.2 + (m - i). 
0.01; We k = k-0.1; m = i, 2, ..., M; k = i, 2, ..., K. The roots of the polynomial were 
studied for each pair of numbers (m, k). In Fig. i the solid and dashed lines i, 2, 3 
divide the region under study into subregions I, II, III, IV, V, VI, in which the polynom- 
ials Q0, Ql, Q2 have a fixed number of real roots No, NI, N 2 greater than unity. Values of 
No, NI, N 2 are shown in Table i. The dashed curve of Fig. 1 shows the relationship of the 
parameters Eu 0 and We for the case of a layer of constant thickness h 0 = i.i. At parameter 
values in subregion I the layer surface has two vertical and two horizontal tangents per 
wavelength; in subregion II, four vertical and two horizontal; III, two horizontal; IV, one 
horizontal; V, one horizontal and two vertical. In subregions I, II, III, VI the layer is 
continuous, while in IV and V it consists of isolated masses. The dashed curve passes 
through subregion III such that at small deviations of the parameters Eu and We from an 
equilibrium cylindrical layer equilibrium wavelike surfaces or isolated masses which do 
not intersect develop, 

2. We will consider the method of solving the boundary problem including Eq. (i) and 
supplemental conditions (2), (3), which will be considered as a system of three nonlinear 
equations with the three unknowns Eu, h(0), h' (0): 

O 1 IEu, h (0), h '  (0)1 = -~- a (h z - -  1) dO - -  m.  = 0, 

( 5 )  
O= [Eu, h (0), h' (0)1 --- h (0) - -  h (2a) = 0, 03  [gu, h (0), h' (0)l = 

= h' ( 0 ) - - h '  (2a) 0. 

S y s t e m  ( 5 )  c a n  be  s o l v e d  n u m e r i c a l l y .  I n  t h e  f i r s t  s t a g e  f o r  t h e  i n i t i a l  a p p r o x i m a t i o n  we 
u s e  t h e  v a l u e  Eu = Eu 0, c o r r e s p o n d i n g  t o  a l a y e r  o f  c o n s t a n t  t h i c k n e s s ,  w i t h  t h e  d e r i v a t i v e  
h'(0) = 0, while for the initial approximation of h(0) we use successively the values i, 
i + Ah 0, i + 2&h0, ..., i + KAh 0 = h 0, where Ah 0 is the step into which the interval [i, 

a b c d 

Fig. 2. Layer free surface forms at m, = 0.85; We = 44: 
a) Eu = Eu 0 = -0.1142; b) -0.1162; c) -0.1239; d) -0.1286. 
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Fig. 3. Branching of the curves Eun(We) from 
curve Eu0(We) at m, = i: i) n = 7; 2) 8; 3) 
9; 4) 10;  5) 1 i .  

h 0] is divided. Equation (i) is integrated over the interval [0, 2v] with correspond:mg 
initial conditions by the Runge-Kutta method with fourth order accuracy formulas. Then 
Eq. (5) is calculated. New h(0) values are chosen until the inequality 

maxI~zl  ~ ~, z = 1, 2, 3 ( 6 )  

i s  s a t i s f i e d .  F o r  ~ t h e v a l u e 5 . 1 0  -2  , ~h 0 = 0 . 1 ( h  0 - 1 ) w a s  c h o s e n .  I n  t h e  s e c o n d  s t a g e  t h e m e t h o d  
o f  s u c c e s s i v e  a p p r o x i m a t i o n s  i n  N e w t o n ' s  f o r m  was u s e d .  The  v a l u e s  o f  t h e  unknowns  o b t e ~ i n e d  
i n  t h e  f i r s t  s t a g e  w e r e  u s e d  a s  i n i t i a l  a p p r o x i m a t i o n s .  The c a l c u l a t i o n  p r o c e s s  was t h e n  
continued until satisfaction of Eq. (6), in which a = 10 -4 . 

Figure 2 shows the forms of the free surface of the layer, with m, and We specified. 
The solution of Eqs. (1)-(3) is not unique, since the various values of the number Eu cor- 
respond to layers with various orders of symmetry n. Figure 3 shows the branching of the 
curves Eun(We) from the curve Eu0(We), corresponding to a layer of constant thickness. 
Thus, specification of the parameters We and m, is not sufficient to define the pressure 
head in the liquid and surrounding medium, as well as the form of the layer free surface. 

The linear theory of hydrodynamic stability [9] will allow us to obtain necessary and 
sufficient conditions for stability of a cylindrical layer of constant thickness with re- 
spect to infinitely long disturbances parallel to the directrix of the rigid cylinder, the 
normal sections of which have n-th order symmetry, and in particular, in the case of an 
ideal liquid 

n e -  1 h~ ~ -  1 
, - , n ~ 2 ;  

W e ~  h~(1--a~/n) 0 < a ~  h ~ @  1 

and for a viscous liquid 

We~< We. = (~-- 1)/h~. ( 7 )  

TABLE 2. Comparison of Ex' 
culations by Linear Hydrod I 

Ro (9 a We 

)erimental Data with Cal- 
mamic Instability Theory 

0,0123 
0,025 
0,025 
0,025 
O, 035 
O, 035 
O, 035 
O, 035 

25, 13 
18,85 
25, 13 
33,51 
18,85 
25, 13 
33, 51 
41,89 

21,15 
99,9 

177,7 
315,8 
274,2 
487,5 
866,6 

1354 

Data of [21 Calc. 

4 -  I . N  
m 

:esults 

% 

1,I36 4--6 I ~ 37,5 
1,081~ 7---9 t 15 !0 

15,3 
1,0691 7--9 ~ 18 
1,053112--13 [ 23 18,8 
1,033114--16, 30 I,~ I 33,3 
1,028[17--19] 38 34,6 
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If, for example, We N < We < WeN+l, then disturbances at n ~ N are unstable, while those 
with n > N are stable. The square of the unstable disturbance increment for the case of 
an ideal liquid has the form 

C ~  a,~ [t z (l  - -  We~/We) - -  a,~] > 0. ( 8 ) 

T h e  r i g h t  s i d e  o f  Eq .  ( 8 )  v a n i s h e s  a t  n = 0 a n d  i s  l e s s  t h a n  z e r o  f o r  n = N + 1.  T h e r e f o r e ,  
at some intermediate value n (0 < n < N + i) the increment has a maximum. It can be expected 
that the perturbation corresponding to this n will be the most unstable, as is, other con- 
ditions being equal, realized in experiments. Table 2 shows data of [2], results of defin- 
ing instability regions with consideration of Eq. (7), and the modes with most rapid incre- 
ment, determined with consideration of Eq. (8). The rightmost column shows the relative 
divergence between the calculated and experimentally observed modes, which does not exceed 
38%, and can be explained by the idealization of the real layer form and nonconsideration of 
viscosity. This fact permits the conclusion that in experiment perturbations were observed, 
corresponding to modes periodic in angle, increasing with time. 

Conclusion. Results of a numerical study of equilibrium form and hydrodynamic stabil- 
ity of a layer rotating as a solid have been presented, with consideration of centrifugal 
acceleration and liquid surface tension. Specification of the Weber number and the liquid 
mass in the layer are insufficient to determine the pressure head in the liquid and surround- 
ing medium, as well as the form of the layer free surface. Comparison with experimental 
data shows that in reality nonsteady state disturbances of the layer free surface are ob- 
served, corresponding to modes periodic in angle, having the highest increment, as defined 
by linear theory. 

NOTATION 

Dimensionless parameters of the problem: Weber number We = pR03~02/o; Euler number 
Eu = (PI - P,)/(pm02R2~ P, liquid density; R0, cylinder radius; m0, angular velocity of 
cylinder rotation; o, liquid surface tension coefficient; PI, pressure in liquid at cylinder 
surface; P=, pressure of undisturbed surrounding medium; hs, mean weighted layer thickness; 
B, integration constant. 
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